

Internet

Nicolas TOURREAU @IANum_Techno – Cité Scolaire de Lannemezan

Les activités Filius sont proposées par David ROCHE @davR74130 – Ac-Grenoble – pixees.fr/informatiquelycee/n_site/snt.html

Nom Prénom :

Classe :

Le protocole TCP-IP

Un réseau local : le réseau de la maison. De quoi est-il constitué ? Comment les différents éléments communiquent-ils ?

Télécharger l'application Fing et scanner le réseau depuis une tablette ou un smartphone.

Que remarquez-vous ?

Un protocole de communication. Quel Protocole permet de communiquer sur le réseau ?

Données	Octets	Paquets	Taille max :	Le protocole IP permet
Codage	$\begin{array}{c} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \end{array}$	et 2 3 juetage 4	Données 	et ajoute
	En	-tête	IP Emetteur : 1.2.3.4 Destinataire : 3.6.7.8 IKP Numéro : 5	Le protocole TCP permet

Communiquer entre éléments d'un réseau : Ping.

Ping est une commande permettant de tester l'accessibilité d'une autre machine à travers un réseau IP. La commande mesure également le temps mis pour recevoir une réponse.

- Réaliser un ping du smartphone pour communiquer avec la borne wifi et le PC Portable avec l' App Fing
- Réaliser un ping du PC Portable pour communiquer avec la borne wifi et le Smartphone avec l'invite de commande CMD

N'ayant pas le matériel nécessaire pour créer des réseaux plus grands, nous allons utiliser un simulateur simple à prendre en main et suffisamment performant : Filius

En utilisant le tuto vidéo à disposition (attention les noms de machines et adresses IP sont différentes), créer un réseau de 4 machines (M1, M2, M3 et M4). L'adresse IP de la machine M1 est "192.168.1.1". Choisir les adresses IP des machines M2, M3 et M4. Effectuer un "ping" de la Machine 2 vers la Machine 4.

Pourquoi un Switch est-il nécessaire ?

Le DNS

Trouver l'adresse IP d'un Site

Configuration d'un Serveur DNS

Ouvrir le fichier « DNS_Simulation.fls »

En utilisant le tuto vidéo à disposition, configurer le Serveur DNS pour que chaque machine soit accessible avec son **NOM** en plus de son adresse IP.

Lancer la commande « ping M5 » depuis la machine M2.

Qu'observez-vous ? _____

Un serveur DNS permet _____

À partir du site ci-contre, tracer la route pour atteindre le site www.youtube.fr

Comparer avec le résultat trouvé dans l'activité précédente avec Fing ? Que constatez-vous ?

En utilisant le tuto vidéo à disposition, créer 3 réseaux de 3 machines chacun. Ces 3 réseaux seront reliés par un routeur.

Après avoir effectué toutes les opérations de configuration nécessaires, effectuez un « ping » entre deux machines de 2 réseaux différents. Puis utiliser la commande « traceroute » entre ces 2 machines.

Qu'observez-vous ? _____

Ouvrir le fichier « Routage_Simulation_6reseaux.fls ».

Faire un « traceroute » entre M14 et M9 (ne pas oublier de faire un « ipconfig » sur la machine M9 afin d'obtenir son adresse IP).

Noter le chemin parcouru pour aller de la machine M14 à la machine M9 :

Supprimer le câble réseau qui relie le routeur F au routeur E (simulation de panne). Refaire un « traceroute » entre M14 et M9.

ATTENTION : cela peut ne pas fonctionner du premier coup, car la mise à jour des tables de routage n'est pas immédiate : vous pouvez essayer de faire un ping entre M14 et M9, si cela ne fonctionne pas (timeout), attendez quelques secondes et recommencez. Une fois que le « ping » fonctionne, vous pouvez faire le « traceroute ».

algorithme déjà vu pourrait être utilisé ?		Pau Pau Box de Paul	Bonjour 1 Passerelle di Paul et Pierre	routeur	routeur Passerel Lucie et S	Lucie Bonjour Box de Lucie
		Box de Pierre	Exemple de	routeur outage pour un me	essage entre Paul et L	Box d Sylvi ucie
outeur n'est pas configuré en automatique, que faudrait-il définir ?	Général	192.160.1.254	192.168.7.1 1 6	168.8.1 Table de routage		
	Afficher tou	outes les lignes	Nouvelle ligne Supprin	er la ligne sélectionnée	Cuvrir dans une nouvelle fenêtre	
	192.168.8.1	in de desentación	255.255.255.255	127.0.0.1	Passettelle survarite	127.0.0.1
	192.168.1.254		255 255 255 255	127.0.0.1		
	192.168.8.0					
	192,168,7,0		255 255 255 0		1	02.158.7.1
	1.000.100.1.0			1192 104 1.		

